Forum27 - Türkiye'nin En Büyük Forumu
 

Go Back   Forum27 - Türkiye'nin En Büyük Forumu > Eğitim - Öğretim > matematik - geometri

Cevapla

 

LinkBack Seçenekler Stil
  #1  
Alt 27 November 2008, 10:52
Senior Member
 
Kayıt Tarihi: 21 September 2008
Mesajlar: 15,180
Konular:
Aldığı Beğeni: 0 xx
Beğendiği Mesajlar: 0 xx
Post EsitsizLikLer

EŞİTSİZLİKLER

A. TANIM
f(x) > 0, f(x) < 0, f(x) ³ 0, f(x) £ 0 ifadelerine fonksiyonların eşitsizliği denir.
Bu eşitsizlikleri sağlayan sayıların oluşturduğu kümeye de eşitsizliğin çözüm kümesi denir.
*
B. BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER
m ¹ 0 olmak üzere, f(x) = mx + n koşulunu sağlayan noktalar analitik düzlemde bir doğru belirtir.

*

*
C. İKİNCİ DERECEDEN BİR BİLİNMEYENLİ EŞİTSİZLİKLER
f(x) = ax2 + bx + c koşulunu sağlayan noktalar analitik düzlemde bir parabol belirtir.

1)* D > 0 ise,

*

*
2)* D = 0 ise,

*

*
3)* D < 0 ise,

*

*

1) f(x) = ax2 + bx + c > 0 ın çözüm kümesi bütün gerçel sayılar ise, D < 0 ve a > 0 dır.
2) f(x) = ax2 + bx + c < 0 ın çözüm kümesi bütün gerçel sayılar ise, D < 0 ve a < 0 dır.
3) a < 0 ve D < 0 ise,
*** f(x) = ax2 + bx + c > 0 ın çözüm kümesi boş kümedir.
*
Ü* Polinom fonksiyonlarından oluşan rasyonel fonksiyonların eşitsizliği incelenirken aşağıdaki 5 adım izlenerek çözüm kümesi bulunur. Bu, bütün eşitsizliklerde uygulanabilen pratik bir çözüm yoludur.
1. Adım : Verilen ifadedeki her çarpan ayrı ayrı sıfıra eşitlenerek kökler bulunur.
2. Adım : Bulunan bu kökler sayı doğrusunda sıralanır.
3. Adım : Sistemin işareti bulunur.
Sistemin işareti; her çarpandaki en büyük dereceli değişkenlerin katsayılarının çarpımının işaretidir.
4. Adım : Bulunan bu işaret, tablonun en sağındaki kutuya yazılır.
5. Adım : Tablodaki diğer kutular sırayla sola doğru doldurulur.
Tek katlı kökün soluna sağındaki işaretin zıttı, çift katlı kökün soluna sağındaki işaretin aynısı yazılır.
*
Ü* Çift katlı köklerde grafik Ox eksenine teğet olduğundan eğri, o noktada da işaret değiştirmez.

*
(x + 1)100 = 0 ª x = – 1 çift katlı köktür.
(x – 1)99 = 0 ª x = 1 tek katlı köktür.
*
Ü* çözüm kümesine;
*
**** P(x) = 0 ı sağlayan x değerleri alınır,
**** Q(x) = 0 ı sağlayan x değerleri alınmaz.
*
Ü* çözüm kümesine;
*
**** P(x) = 0
**** Q(x) = 0
sağlayan x değerleri alınmaz.
*
D. EŞİTSİZLİK SİSTEMİ
İki ya da daha fazla eşitsizliğin oluşturduğu sisteme eşitsizlik sistemi denir.
Bir eşitsizlik sistemindeki eşitsizlikleri birlikte sağlayan değerlerin oluşturduğu kümeye eşitsizlik sisteminin çözüm kümesi denir.
Eşitsizlik sisteminde her eşitsizliğin çözüm aralığı ayrı ayrı bulunur. Bu aralıkların kesişim kümesi sistemin çözüm kümesidir.
*
Ü* f(x) > 0 ın çözüm kümesi Ç1 ve
*** g(x) £ 0 ın çözüm kümesi Ç2 ise
** sisteminin çözüm kümesi
** Ç1 Ç Ç2 dir.
*
E. İKİNCİ DERECEDEN DENKLEMİN KÖKLERİNİN İŞARETLERİNİN İNCELENMESİ
f(x) = ax2 + bx + c = 0 ın kökleri x1 ve x2 olsun.
D = b2 – 4ac olmak üzere aşağıdaki tabloyu yazabiliriz.


*
F. İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLERİN* KÖKLERİNİN BİR
*** GERÇEL SAYI İLE KARŞILAŞTIRILMASI
f(x) = ax2 + bx + c = 0 denkleminin gerçel kökleri x1 ve x2 (x1 < x2) olmak üzere, k gerçel sayısı ile x1 ve x2 nin karşılaştırılması ile ilgili bilgileri aşağıdaki tabloda verelim.
Alıntı ile Cevapla
Cevapla

Seçenekler
Stil



Saat: 22:51


Telif Hakları vBulletin® v3.8.9 Copyright ©2000 - 2020, ve
Jelsoft Enterprises Ltd.'e Aittir.
Tipobet Kameralı Sohbet Süpertotobet istanbul escort istanbul escort Bahis Siteleri Bahis Siteleri Bahis Siteleri Bahis Siteleri Bahis Siteleri Bahis Siteleri Betvole tipobet365 elexbet canlı maç izle elexbet giriş hiltonbet canlı hiltonbet hiltonbet tv hiltonbet pashagaming giriş ngsbahis tv ngsbahis güncel giriş Bakırköy escort Ataköy escort Avcılar escort goldenbahis tv betmatik giriş elexbet giriş hiltonbet sex hikaye porno seyret buca escort bedava bonus İnterbahis Gorabet Goldenbahis Fenomenbet Betper Betpas Betpark Arzbet Sultanbet megabahis grbets kolaybet belugabahis eyüp escort beylikdüzü escort çorlu escort izmir escort istanbul escort bayan konya escort bayan sex hikaye

Search Engine Optimization by vBSEO 3.6.0 PL2